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Abstract Both complex systems methods (such as agent-

based modeling) and computational methods (such as

programming) provide powerful ways for students to un-

derstand new phenomena. To understand how to effec-

tively teach complex systems and computational content to

younger students, we conducted a study in four urban

middle school classrooms comparing 2-week-long cur-

ricular units—one using a physical robotics participatory

simulation and one using a virtual robotics participatory

simulation. We compare the two units for their effective-

ness in supporting students’ complex systems thinking and

computational thinking skills. We find that while both units

improved student outcomes to roughly the same extent,

they engendered different perspectives on the content. That

is, students using the physical system were more likely to

interpret situations from a bottom-up (‘‘agent’’) perspective,

and students using the virtual system were more likely to

employ a top-down (‘‘aggregate’’) perspective. Our outcomes

suggest that the medium of students’ interactions with sys-

tems leads to differences in their learning from and about

those systems. We explore the reasons for and effects of these

differences, challenges in teaching this content, and student

learning gains. The paper contributes operationalizable

definitions of complex systems perspectives and computa-

tional perspectives and provides both a theoretical framework

for and empirical evidence of a relationship between those

two perspectives.

Keywords Computational thinking � Systems thinking �
Robotics � Participatory simulations

Introduction

In the last 10 years, there has been a significant amount of

literature reviewing both computational thinking and

complex systems thinking, but there has been relatively

little work connecting the two. Computational thinking is

often situated in both computer programming and under-

standing computer systems and often defined by the modes

of thought engendered by computer programming (Na-

tional Research Council 2010). Complex systems thinking

is often defined in relationship to computational systems

modeling and the emergence of behaviors from the inter-

action of individual elements (Jacobson and Wilensky

2006). In this paper, we present a comparative study of

students using a visual programming language to program

either virtual or physical robots in an attempt to understand

the ways that complex systems thinking and computational

thinking interact and how we can best support students in

learning them. This paper presents the argument that the

two types of thinking work together by leveraging student

perspectives on complex systems and computational con-

tent. This argument contributes to the field both by op-

erationalizing a definition of those perspectives and by

providing clear multimodal evidence of their overlap.

Framing a phenomenon as a complex system provides

an accessible way for students (and scientists) to
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understand complex scientific content. Complex systems

theory and methods have been used extensively to inves-

tigate scientific phenomena, and there is evidence that by

breaking down scientific phenomena into constituent parts

and the relationships between them, students may better

develop inroads to understanding (viz. Holland 1999;

Wilensky and Reisman 2006). However, there has been

some debate as to the usefulness of teaching secondary

school science with complex systems. Hmelo-Silver and

Pfeffer (2004) argue that complex representations are un-

intuitive for younger students, and Chi (2005) argues that

structuring phenomena as complex systems can encourage

students to stop at surface level features rather than delve

into more systemic understandings. On the other hand,

Wilensky and Reisman (2006) show that teaching students

to model complex systems can lead to deep systems un-

derstanding more easily and more quickly than traditional

science instruction, and recent work suggests that teaching

complex systems can help students transfer knowledge

between relatively disparate content areas (Davis and Su-

mara 2006; Goldstone and Wilensky 2008).

One potential issue is that modeling scientific phe-

nomena with complex systems methods often involves

some form of computer programming (Johnson 2002).

There is considerable disagreement about the importance

and the feasibility of teaching young students to program

computers. Some have argued that programming is too

difficult for younger students (Lahtinen et al. 2005; Pea and

Kurland 1984). In contrast, there is a body of research that

claims to show that K-12 students can program computers

to perform a variety of useful tasks without sustained in-

struction (Berland et al. 2011; Kelleher et al. 2007; Papert

1980; Wyeth 2008). Indeed, both learning scientists such as

diSessa (2001) and computer scientists such as Ben-Ari

(2001) or Guzdial and Forte (2005) find that many of the

reported difficulties in teaching computer programming

have been due to the structure and representations of the

tasks in traditional computer science instruction. The im-

plication is that if we design and facilitate more relevant,

engaging, and powerful activities, these difficulties will

matter less.

In this paper, we describe a learning environment,

VBOT (Berland and Wilensky 2008), that we designed and

developed to teach both complex systems thinking using a

form of computer programming and computational think-

ing. Using VBOT, we investigate how framing complex

systems modeling as a collaborative computer program-

ming task affects how students interpret systems content

and, conversely, how framing computational thinking

content in a systems context affects how students interpret

computational content. As framing content is fundamen-

tally a design question, this study is structured as design-

based research (Cobb et al. 2003; Collins et al. 2004). For

the study, we designed, developed, and deployed two

versions of VBOT, one that uses actual physical robots

(Physical VBOT) and one that uses simulated robots on a

screen (Virtual VBOT).

The central design-based research question investigated

here is how these two instantiations of VBOT, physical and

virtual, differently affected student perspectives and un-

derstanding of computational and complex systems think-

ing skills.

To address this question, we conducted a study in four

8th grade classrooms across two public schools in Chicago.

The study compared 2-week-long robotics curricular units

using VBOT—one that used a physical robotics par-

ticipatory simulation and one that used a virtual robotics

participatory simulation (Colella 2000; Klopfer et al. 2004;

Wilensky and Stroup 1999a). Units were matched for

equivalence in user interface, curriculum, teacher effects,

and school effects. These two units were compared for their

effectiveness in generating student understandings of

complex systems content (in this case, being able to use

systems modeling to address science content) and compu-

tational content (in this case, being able to use computer

programming to address science content). The remainder of

the paper describes the rationale for the study, the design of

the units and tools, and the resulting student outcomes. We

define and describe our theoretical framework for under-

standing computational and complex systems content and

assess the effectiveness of the units in supporting students’

understanding.

This study suggests that the way that students interact

with and model complex systems creates meaningful dif-

ferences in student perspectives on those systems. In par-

ticular, students who worked with the virtual systems

gained a more top-down (‘‘aggregate’’) perspective on both

complex systems and computational content, and the stu-

dents who worked with the physical systems gained a more

bottom-up (‘‘agent’’) perspective on that content. While

average performance gains were similar across all class-

rooms, we found significant differences in both the process

of learning the content and student understanding of the

content between virtual class and physical class students.

These differences persisted across a variety of measures, in

two different schools, and with three different teachers.

This work explores the reasons for these differences of

perspective, the effects of the differences of perspective,

the student learning gains, and the challenges in teaching

complex systems and computational thinking.

Computation and Complex Systems

Both computational thinking and complex systems think-

ing are not yet well defined, but core to our interpretation
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of both is that learning the methods and perspectives of a

domain gives a student the ability to perceive and under-

stand new content from other domains. Computational

thinking is a term used to describe how one can use the

methods and perspectives of computer science (diSessa

2001), and complex systems thinking used to describe how

one could use the methods and perspectives of complex

systems research (Jacobson and Wilensky 2006).

Computational thinking is a term often used to describe

the ability to think with the computer-as-tool. diSessa (2001)

argues that developing cognitive ability requires that stu-

dents adapt their thinking processes to align with their tools.

Functionally, this might describe being able to think like a

computer programmer or a computer artist. Thinking in such

a way allows the student to use computation to solve even

those problems in which computers might not be used.

Moreover, being able to conceptualize which elements of a

given problem the computer can assist with is important to

computational thinking (National Research Council 2010).

There are a variety of reasons why we would want to support

computational thinking skills, but a core reason is that it

enables the student to use a computer as a protean ‘‘tool to

think with’’ (Papert 1980). Furthermore, evidence shows

myriad benefits in supporting broader introductions to

computation, including better problem solving skills

(Schoenfeld 1992), better communication of computational

content (diSessa 2001), and increased likelihood to report

interest in STEM careers (Martin et al. 2013). In this paper,

we use a new term: computational perspectives. Computa-

tional perspectives suggest that computational thinking is

not monolithic and that thinking with the computer-as-tool

can be affected deeply by how it is contextualized and

constrained. Some definitions of computational thinking

stress technical skill in learning to program, but what sets

computational thinking apart from computer science is an

emphasis on translating that understanding of computation

to domains that are not necessarily computer scientific,

whether by communicating computational content to non-

technical colleagues or by applying processes learned in

programming to contexts that are not necessarily program-

ming (Basawapatna et al. 2011; National Research Council

2010; Wing 2006).

Similarly, complex systems thinking can be used to de-

scribe a student’s ability to think in terms of systems of

elements. As with computational thinking, this term is hotly

debated and somewhat divergent (c.f. Chi 2005; Goldstone

and Wilensky 2008; Grotzer and Basca 2003), but, in this

paper, we focus on a specific form of complex systems

thinking called levels thinking (Wilensky and Resnick

1999). Levels thinking describes the ability to think with and

from complex systems theories and models in terms of

component aspects (which we term ‘‘agents’’), groups of

those agents (which we term ‘‘aggregates’’), and the models

and meaning that emerge from their relationships. Levy and

Wilensky (2008) demonstrate that learning to think about

phenomena in ‘‘levels’’ can support deeper understandings

of many scientific phenomena quickly and effectively.

Furthermore, as students become more familiar with the

relationships between levels of complex phenomena, they

can begin to use emergence and complex systems thinking

as a tool to think about everyday physical and social phe-

nomena such as traffic flowing on a highway, students self-

organizing in a gym class, or the clapping of an audience.

Complex systems thinking enables students to under-

stand scientific phenomena that are otherwise quite difficult

to comprehend. Here, we use the term complex systems to

mean systems in which effects or constructs emerge from

aggregations of individual agents. A common example is

the ‘‘V’’ shape of a flock of geese flying overhead. In this

case, the ‘‘V’’ emerges from the aggregation of the be-

haviors of individual birds (or ‘‘agents’’). There has been

considerable research showing that understanding complex

systems can be difficult for learners (Chi 2005; Penner

2000; Resnick 2003; Wilensky and Resnick 1999). To

address this difficulty, agent-based modeling environments

have been developed that help people make sense of

complex systems (e.g., Collier 2003; Klopfer et al. 2002;

Luke et al. 2005; Wilensky 1999). In the past decade, we

have seen a growing body of research showing that using

agent-based modeling is more comprehensible to middle

and high school students than traditional equation-based

science (Ioannidou et al. 2003; Klopfer et al. 2005;

Wilensky 2003; Wilensky and Reisman 2006). As in

computational thinking, complex systems thinking is dis-

tinct from traditional science learning in its emphasis on

translating broad technical skills to a variety of science

content domain contexts, communicating complex content

to nonexperts, and learning how to apply complex systems

methods to content that is not necessarily framed as a

complex system (Blikstein and Wilensky 2009; Sengupta

and Wilensky 2009).

Computational Perspectives and Complex Systems

Perspectives

In this paper, we offer two new terms: computational per-

spectives and complex systems perspectives. Focusing on

perspectives as an aspect of (computational or complex sys-

tems) thinking allows us to ask what is flexible about what one

sees in a phenomenon. A computational perspective suggests

that computational thinking is not monolithic and that

thinking with the computer-as-tool can be affected by how it

is contextualized and constrained. People can take up differ-

ent ‘‘perspectives’’ on context—many of which can be com-

plementary—such as reader, author, analyst, and critic.

Perspectives are positions that a learner can take, a ‘‘stance’’
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rather than a state. In contrast, some definitions of computa-

tional thinking stress technical skill in learning to program,

but taking a computational perspective suggests that the

learner is seeing computation across domains that are not

necessarily computer scientific. Analogously, a complex

systems perspective uses the model of a complex system as a

kind of lens: how one understands a complicated phe-

nomenon has a lot to do with how one frames the problem.

The central argument of the paper is that features of the

design of the learning environment affect the students’

perspectives. Specifically, we argue that the physical en-

vironment engendered an agent perspective on both com-

putational systems content and that the virtual environment

engendered a more aggregate perspective.

Connections Between Complex Systems Thinking

and Computational Perspectives

Though hinted at in previous literature, the connections

among complex systems thinking and computational

thinking have not been explicitly examined. Discussions

related to the implications of computational thinking extend

well beyond contemporary discussions (Bundy 2007; Wing

2006). Approaching current discussions of computational

thinking, Papert (1975) identified that students’ construc-

tion of more refined understandings of mathematical (and

other) concepts could be supported in their articulation of

representations and problems in computational (algorith-

mic) terms. More recently, Pea (1987) outlined significant

benefits of utilizing thought progressions similar to those of

computers while building upon unique human abilities to

plan and adapt increasingly complex algorithms. Similarly,

Soloway (1986) highlighted the cognitive affordances of

internalizing the structures of computer programs.

Though Wilensky and Reisman (2006) and other com-

plex systems researchers do not specifically name compu-

tational thinking (Hmelo et al. 2000; Klopfer et al. 2005;

Perkins and Grotzer 2005), the algorithmic, procedural

nature of the systems explorations they describe reflects

computational thinking descriptions provided elsewhere

(Wing 2006). Also, within complex systems literature,

there is reliance on programming agent-based behavior

(e.g., individual agents) to utilize simple sets of rules (al-

gorithms) when interacting, which results in emergently

complex systems (Resnick and Wilensky 1998; Wilensky

and Reisman 2006). As such, computational thinking skills

are fundamental to perspectives that require the modeling

of complex systems.

Despite the fact that the use of complex systems

thinking has been shown to help learners better understand

the functioning of individual components within multiple

scientific and technical disciplines (Jacobson and Wilensky

2006) and in varied levels (as per Wilensky and Resnick

1999), there has been little explicit exploration of how

complex systems thinking might support students’ com-

putational thinking. Similarly, there has been little explo-

ration of how (general) computational thinking might be

supported through complex systems thinking (Resnick and

Wilensky 1998), which closely resembles Wing’s (2006)

description of ‘‘deeper computational thinking’’ (pp. 3719–

3720). We have identified the overlapping parallels among

complex systems thinking and computational thinking, the

identified benefits of complex systems thinking for various

content area concepts (Goldstone and Wilensky 2008), and

calls to better understand how to support students’ com-

putational thinking (Wing 2006). As such, the current study

is structured to explicitly examine those relationships

among complex systems thinking, computational thinking,

and student learning progressions. To date, there has been

no simultaneous, comparative exploration of the impact of

such environments in supporting the disparate skills of

complex systems thinking, computational thinking, and

novice programming simultaneously.

Our argument, in part, is that by focusing on the rela-

tionship between computational perspectives (as opposed to

computational thinking more broadly) and complex systems

perspectives, the connection will be both clearer and easier

to identify. In short, this work addresses a specific hole in

the existing research. In Wing (2006) description of the

importance of computational thinking, she also highlights

the necessity of identifying pedagogy that best supports

students’ computational thinking. Previous research sug-

gests that complex systems thinking may prove beneficial in

doing so (Goldstone and Wilensky 2008; Wilensky and

Reisman 2006; Wilensky and Resnick 1999). Reliant on the

previously identified literature, we attempt to provide some

insight into some very specific questions related to fa-

cilitating students’ computational and complex systems

thinking. Specifically, we attempt to document potential

differences in supporting students’ computational thinking

and complex systems thinking gains with physical or virtual

novice programming environments. This is motivated by

the aforementioned literature. In order to evaluate, if and

how such affordances work together to better support stu-

dents’ learning, we focus on comparing complex systems

thinking, computational thinking, and novice programming

in two strongly related though disparate groups—one which

utilized a purely virtual interface and virtual robots and

another utilizing more physical (non-virtual) robots.

Supporting Complex Systems and Computational

Perspectives

This study is necessary for two core reasons: We do not yet

understand many of the connections between complex
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systems and computational perspectives, and we do not yet

understand how the design of learning environments can

affect how students learn that content. There are few

studies addressing those connections, and even fewer

studies addressing why and how we might support those

connections.

However, there has been significant research into how

students separately learn both programming and complex

systems content, and there are confluences between the

two domains. Much of the research in teaching both

computational and complex systems content has used a

constructionist framework for action (diSessa and Cobb

2004), as constructionism has been shown to be par-

ticularly well suited to teaching both systems modeling

and computer programming in a social space. Research

has repeatedly shown that robotics learning environments

can be used to effectively teach computational content;

building on such findings, both physical and virtual

robotics systems have been used to teach computation

(Berland et al. 2013; Hancock 2003; Portsmore 2005;

Resnick et al. 1988; Schweikardt and Gross 2006; Sklar

et al. 2003a). One core impetus for undertaking this study

is that previous work by Wilensky and Reisman (2006)

has suggested that computational thinking and complex

systems thinking are related. Specifically, here we focus

on examining the components of computational and

complex systems thinking that require iterative problem

solving, recursive thinking, and abstraction and decom-

position when designing large complex systems (Wing

2006; viz. Wilensky and Reisman 2006). However, there

have been no comprehensive studies of the relative af-

fordances of physical and virtual environments in con-

structionist learning of these skills.

Outside of education research, in the literature on hu-

man–computer interaction, there have been several studies

of the relative affordances of virtual and physical envi-

ronments (see Sharlin et al. 2004, for a review of research

on tangible interfaces), but that research is more narrowly

technical and it is not typically empirical.

Similarly, though there is considerable work using

constructionist methods to teach complex systems content

and methods (e.g., Klopfer et al. 2005; Wilensky 2003), the

field’s youth leaves many topics unaddressed. There has

been relatively little research concerning the use of phy-

sical robotics in teaching complex systems thinking,

though it is common for robotics research to use groups of

robots as examples of complex systems (see Parker and

Schultz 2005, for a variety of examples).

As such, this paper presents two design-based research

questions: How do virtual and physical robotics differ-

ently support complex systems and computational think-

ing? How do they engender perspectives on complex

content?

Method

Participants

In this study, we deployed the VBOT learning environment

(described below) in two classes at two Chicago public

schools (four classes total). We worked with two 8th grade

classes from a small nonmagnet middle school on Chica-

go’s northwest side (henceforth, Old Grove1) and two 8th

grade classes from a large nonmagnet public high school

on Chicago’s south side (henceforth, Bayville). At each

school, one class used VBOT with virtual robots and the

other used VBOT with physical robots. Each of the four

enactments lasted for 5 school days. At Old Grove, sepa-

rate teachers conducted the two classes, and Bayville had

one teacher for both classes. No students overlapped be-

tween any two classes. Each class consisted of 15–24 8th

grade students, with 78 students consenting (as detailed

below). The schools were selected because they represent

broadly different populations of low-/mid-SES, low-/mid-

performing schools, as described below. For maximum

equivalence, we selected the two biology classrooms at

each school for the intervention. Both schools offered only

two 8th grade biology classes, so no further sub-selection

was necessary. That said, this work is analytic and pro-

cedural rather than confirmatory.

Old Grove School

In the two classes at Old Grove School, 43 8th grade stu-

dents participated in the study. The school is approximately

50 % White (non-Hispanic) with 40 % of middle school

students receiving free or reduced lunch. Our participants

included multiple students from every inhabited continent

except Australia. Old Grove is small, the classes tend to be

small, the students greet each other freely in the halls, and

the principal often stops students to chat in the halls.

Old Grove Class One (Virtual)—Mr. Wilson: In this

class, 20 of 22 students had consented by the commence-

ment of the study. Data were not collected on the two

unconsented students because their consent forms were

only received after the beginning of the study. Mr. Wilson

taught the class that used the virtual VBOT system. His

class expressed excitement at the prospect of using robots

and games in the classroom.

Old Grove Class Two (Physical)—Mr. Cleveland: In

this class, 23 of 24 students consented. One student refused

consent for personal reasons. The class also engaged in

whole class discussions mediated by Mr. Cleveland that

exhibited strict turn taking. Mr. Cleveland had worked with

robotics in his 3rd grade classroom several years prior and

1 The names of all schools, teachers, and students have been changed.
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had enjoyed using them, but had not yet found them to be

useful for teaching 8th grade biology.

Bayville School

In the two classes at Bayville School, 35 8th grade students

participated in the study. Bayville is classically institutional,

with enormous buildings, large distances between classes,

and few informal interactions outside the classroom. The

school contains grades 7–12 and is located in an urban setting

on the south side of Chicago. The school is approximately

95 % African-American, with approximately 70 % of the

students receiving free or reduced lunch.

Bayville Classes One and Two (Virtual and Physical)—

Ms. Adams: In the virtual class, all 24 students consented,

and in the physical class, 11 of 15 students consented.

Three students that refused consent reported religious

prohibitions on video recordings, and one student refused

consent for personal reasons. Ms. Adams taught both the

virtual VBOT class and the physical VBOT class at Bay-

ville. She has an unmistakable rapport with her students,

who spoke freely with her and readily conversed with her

about the material. At the time of the study, she had only

been teaching for 3 years. She had previously used LEGO

Mindstorms robots in a summer class she taught at Bay-

ville, although she reported that she had not felt comfort-

able using them due to the lack of a curriculum and a self-

perceived lack of technical experience.

VBOT: Virtual/Physical Robotics

The VBOT programming environment was designed and

implemented for this project. It is a networked participa-

tory simulation, using the HubNet module (Wilensky and

Stroup 1999b) of the NetLogo agent-based modeling en-

vironment (Wilensky 1999). In VBOT, users program a

virtual or physical robot (‘‘vbot’’) on a shared space of a

physical or virtual soccer pitch. This works similarly to a

networked soccer video game, but, rather than each user

controlling a virtual player directly, they must program the

actions of that player. While there is only one user interface

for VBOT (see Fig. 1), there are two types of robots that

the interface might control: virtual or physical. A virtual

robot is similar to a player in the soccer video game, but

with a visual, computer-based representation of a robot. A

physical robot is a LEGO Mindstorms robot, which, in this

case, was pre-built for the students to work with the VBOT

system. In the virtual environment, users follow all vbots

on an associated NetLogo screen, while watching their

vbot’s behavior and history in their own interface. In the

physical environment, users see all of the vbots currently

playing on the ground, and they modify their programs on

their own computers and then upload those programs to

their physical vbot on the ground.

Beyond creating and manipulating the programs, the

user interface supports users in monitoring vbots’ progress

through three features: It shows the position of the user’s

individual vbot on a radar-like display; it shows the posi-

tions of the other users’ vbots (for the virtual class only);

and it shows a tapering history trail for the associated vbot.

VBOT Programming Language2

VBOT is a graphical programming language inspired by

Braitenberg’s robots (1984). Braitenberg reframes pro-

gramming into a set of visual circuits that control anthro-

pomorphic robots. This framing is intended to introduce

programming using an immediately accessible metaphor

and imbue the act of programming with a ‘‘human’’ ele-

ment. The most canonical example of one of his robots is

the LOVE robot. LOVE uses just two light sensors, two

simple motors, and two wires that each connects one sensor

to one motor (left sensor to right motor and vice versa); it

behaves in a surprisingly complex way, wandering toward

the light and occasionally orbiting it. We designed and

developed VBOT to be a graphical programming language

using the metaphor of Braitenberg’s circuits with a func-

tional programming paradigm. As such, students program

by creating functions (in both the mathematical and com-

putational sense) that take a numerical input and generate a

numerical output. It is relatively novel in that: each pro-

gram is a mathematical function that maps sensor data to

motor actions; all programs compile; all programs generate

some behavior; and the behavior of a program (in any state)

is always visible on the screen.

The sensor data consist primarily of the proximity and

direction to either other robots or a light source (on a scale

of 0–100 %). The motor actions consist of signals given to

the two back wheels of the physical robot or the simulated

back wheels of the virtual robot. To map a set of sensor

signals to motor actions, a user can use up to 25 building

blocks. These building blocks include mathematical op-

erators, if–then statements (logical operators), and vari-

ables. The mathematical operators are add, subtract,

multiply, divide, and negate; the mathematical operators

take multiple inputs (from sensors or other blocks) and

perform an operation on those inputs (see Fig. 1 for an

example of addition). The logical operators receive multi-

ple inputs and produce output contingent on those inputs.

For example, the logical operator ‘‘IF (A = B) THEN C

OR ELSE D’’ takes four numerical inputs (A, B, C, D),

compares A and B for equality; it outputs (or ‘‘returns’’) the

2 Note that this section requires some knowledge of programming

languages.
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C input if A equals B, and it outputs D if A does not equal

B.3 Building blocks are connected with wires; wires con-

nect outputs to inputs. A program that connects sensors to

motors with wires and building blocks is called a circuit.

Each circuit is evaluated for movement twice each second.

A major benefit of visualizing and building a program in

terms of a circuit is that the programmer can follow both

the logic of a signal through the circuit and understand the

whole circuit by looking at the relationships between all of

its elements simultaneously. However, it is important to

note that this can limit the complexity of an end program.

Hancock (2003) designed a novel programming language

(‘‘Flogo’’) also based to some extent on Braitenberg’s

circuit metaphor; he uses Flogo to teach computation to

undergraduate and graduate students at MIT. Though we

are targeting different populations, many of our initial

design decisions came from his work (see Berland and

Wilensky 2005, for more details).

While this work focuses primarily on the differences

between the two environments, Berland (2008) covers

implementation in significantly more detail, including a

genealogy of design decisions, multiple detailed ‘‘play-

throughs,’’ and development details.

Differences Between Virtual and Physical Robotics

Some of the constraints for this work were as follows: It

must be possible to use this material in real classrooms; it

must be inexpensive to deploy; and it must not require

hardware that is difficult to procure or that is proprietary to

this project. Many otherwise excellent robotics research

projects have been rendered ineffective due to the difficulty

of deploying the work in real classrooms. Sipitakiat and

Blikstein (2010) describe the difficulty of deploying even a

very inexpensive proprietary robotics kit. As such, it was

paramount to interact with off-the-shelf robotics kits

readily available to classrooms. The most popular robotics

kit at the time of deployment was LEGO Mindstorms.

Though there are benefits of using a kit that teaćhers can

obtain, it is impossible to make the classroom-ready virtual

and classroom-ready physical environments into fully

equivalent technologies. Because we are evaluating, in

part, the differences between virtual and physical design as

they can be used in classrooms (rather than some philo-

sophical difference between virtuality and physicality),

making them fully equivalent would handicap either the

physical or virtual environment or render them different

enough from classroom use as to be inauthentic.

Virtual and physical robotics have each been imple-

mented and researched in classroom settings hundreds of

times, and two major differences between virtual and

physical robots that stand out across those projects are (a)

the speed of development and (b) in the specificity of the

sensor data (e.g., Azhar et al. 2006; Druin and Hendler

2000). In this case of VBOT, the virtual classes had circuits

downloaded to their robots wirelessly, but the physical

classes had to plug their robots into their computer to

upload circuits to the robots (which took more time). Se-

cond, as it is difficult and expensive to create sensors with

Fig. 1 VBOT client interface.

In this example, the right motor

will impel the robot forward at

28 % of maximum power, the

value of adding the left light and

left robot sensors. The function

is reversed left to right but

otherwise identical for the left

motor. The student’s VBOT

(‘‘alice’’) is on the top right (in

the ‘‘field’’) in green, and its

recent movement is tracked in

red behind it. The lamp is the

white square in the middle of

the field, and light radiates from

it

3 In pseudocode, this would be:

function f(A,B,C,D) {if (A ==B) {return C;} else {return D;}}.
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reliable precision and accuracy (Martin 1996), inexpensive

kits such as LEGO Mindstorms have inaccurate and im-

precise (‘‘noisy’’) sensors in a dynamic (real-world) space

that pollute sensor data in a random-seeming manner. Due

in part to noise, the behavior of virtual and physical robots

is rarely identical, and we attempted to mitigate those

differences in part by simulating noise similar to a physical

sensor in the virtual environment, as per Maes (1990).

Procedure

VBOT Activities

VBOT includes an ordered set of activities for the classroom

(described in Table 1). The activities are designed to support

the students in building programming skills that were

developed the previous day. Due to the differences between

virtual and physical robots, the activities could not be

identical in both classes; however, we were able to match

the activities, so that the space of writable programs would

be the same. For example, a circuit written by a student on

day 3 in a physical class would work for a student on day 3

in a virtual class (and vice versa).

Research Design

A researcher co-taught the class with the class’s regular

teacher. The researcher taught VBOT syntax for ~30 min on

day 1 and ~20 min on days 2 and 3 using two predetermined

curricula. Other than that instruction, the sessions required

minimal intervention. After day 3, the researchers’ primary

role was to aid the teacher in facilitating the activities in the

classroom. The teacher was responsible for classroom

management and describing activity instructions. Through-

out the activity, the researchers provided technical support.

The first author met with each teacher for 1–2 h prior to

the first day of the activities and after the last day of the

activities. The meeting prior to the activities consisted of an

interview about his or her students (~30 min), an opportu-

nity to experiment with VBOT (~30 min), and a discussion

of the teacher’s and the researchers’ roles in the classroom.

Data Collection

The data collected for this study consisted of two video-

tapes of each implementation day, full activity logs of each

student’s interactions with the vbot program, and pre-/-

posttests. The tests were about 20 min long, and we de-

scribe them in detail below. The classroom enactments

were videotaped using two cameras at all times. One

camera focused on the activity of the whole classroom.

Another camera focused on one group of students at a time,

recording the behaviors and interactions of the students

using the system in the activity.

The primary source of data for this paper is the activity

log. On the activity log, we have record of every interaction

with the software: when they created circuits, how they

program circuits, every change they made to any circuit,

every time they downloaded their circuit to their vbot, and

every time they used the keyboard or mouse in VBOT. Our

intention was that by capturing all of the interaction with

the program by the students, we could understand the

process by which they progressed in learning to program

and learned to interact within the system. The pretest and

posttest were designed to better understand that progress at

a summative level. On the other hand, the video was pri-

mary used in this study only to verify our understanding of

the results from the activity logs and tests.

Measures

Performance Measures

Our pre-/posttest measures are designed to gain insight into

students’ computational and complex systems thinking.

The full text of all relevant questions can be found in the

Table 1 VBOT activities

Activity description

Orbit (day 1) In the orbit activity, each student built a circuit to move her vbot to the middle of the screen so as to circle a light source. In

the virtual class, the middle of the screen is marked by a virtual light source. In the physical class, the light sources were

lamps. The activity is complete when all students complete a circuit successfully. This activity requires using only light

sensors and motors

Flocking (day 2) The goal of the flocking activity is to create a stable group (‘‘flock’’) of bots that travel together away from the light. This

activity requires vbot sensors, motors, and students can use a mathematical building block

Tag (day 3) In tag, the goal for the class was to maximize total tags. A tag occurs when a vbot touches another vbot that has not been

tagged before. The untagged vbot then becomes tagged. Logical operators are introduced

Soccer (days 4 and

5)

As a final activity, all students take part in a soccer game. In the physical class, the game looks much like traditional robot

soccer (Sklar et al. 2003b); two teams, each consisting of 3 robots, attempt to push a ball into the other team’s goal. The

virtual class played a variant of robot soccer in which they attempted to move multiple balls into the goal

Each day, the students were presented with a challenge
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‘‘Appendix.’’ All questions were graded on a scale of 0–3

by two graders with a 100 % inter-rater reliability: A score

of 0 is an unanswered question; a score of 1 means ‘‘in-

correct’’; a score of 2 means ‘‘partially correct or shows

some understanding’’; and a score of 3 is ‘‘correct or shows

full understanding.’’ Note that question 3 is irrelevant to

this paper and, as such, is not included.

Question 1 (Complex Systems Thinking) Q1 is designed

to test a student’s complex systems thinking using Jacob-

son and Wilensky’s (2006) hierarchy of complex system

understanding. The question presents a picture of birds

flying in a V-shape; one of the birds has an arrow pointing

to it with the name ‘‘Shelby.’’ The description of the pic-

ture in the question reads, ‘‘When birds fly south for the

winter, they often form a V-shape. You might have seen

this in the sky. This is a picture of flock of birds flying in

V-shape.’’

Wilensky and Resnick (1999) suggest that people tend

to perceive biological complex systems from a determin-

istic-centralized perspective: that is, they posit (often

erroneously) that a leader directly controls the system. As

such, question 1 prompts students to evaluate flocking in

terms of one agent (1A, ‘‘how does ‘Shelby’ know where to

go?’’), multiple agents (1B, ‘‘how do the birds know where

to go?’’), and aggregates (1C, ‘‘why do birds fly in a

V-shape’’). Levy and Wilensky (2008) show that these

framings can affect how students perceive and understand

levels thinking differently. We wrote these questions to be

explicitly similar to those in Wilensky and Resnick (1999)

and scored them in the same way. We used three rater-

researchers, all of whom had previous experience with the

scoring scheme, and, as such, we achieved a perfect inter-

rater reliability of 100 %. This is not as surprising as it

might seem, as there were only three possible codes on any

answered sub-question (‘‘incorrect,’’ ‘‘partially correct,’’ or

‘‘fully correct’’).

Question 2 (Computational Thinking) In Q2, each student

both interpreted and modified a simple flowchart. Flow-

charts have a deep connection to computer programming,

but they do not require computer programming. In par-

ticular, this question was designed to evaluate a students’

ability to follow and create computational logic. It is bro-

ken into three parts: (a) self-report of prior experience; (b)

follow a flowchart with several branches; and (c) add to the

flowchart to change its functionality. The self-report of

prior experience (2A) did not correlate with the rest of Q2

on the pretest or the posttest, so its reliability is question-

able and, as such, it is not used in this study. There was

very little ambiguity in questions 2B and 2C, and 97 % of

the students (all but 2) got them either fully right or fully

wrong. As such, no human raters were used.

Question 3 (Essay Question on the Relationship Between

Classroom Space and ‘‘Robot Space’’) Q3 was an essay-

style question about how students navigate space. It was

less relevant to this work and, as such, has been omitted for

space.

Question 4 (Programming Skill) Question 4 requires

students to build a VBOT circuit on a paper facsimile of an

actual VBOT circuit board. It is well supported from a

variety of theoretical perspectives, including our own, that

by engaging students in a variety of authentic tasks, and

evaluating those tasks, is an effective way of assessing their

ability to perform that task. Question 4 describes four

different scenarios and asks students to sketch out the

circuit they would build for those scenarios. The four sub-

questions were as follows:

4A. Wire up a vbot to go in a loop around the screen.

4B. Wire up a vbot that would make a smaller loop.

4C. Wire up a vbot that makes either loop using NO

LIGHT SENSORS.

4D. Wire up a vbot that makes either loop using NO

VBOT/BUMP SENSORS.

Questions 4A and 4B were designed to test student’s

understanding of programming a vbot without regard to the

surrounding system, while questions 4C and 4D were de-

signed to test student’s understanding of programming a

vbot in the context of a system (by restricting the sensors

used). By restricting the sensors, the students were forced

to consider contextual sources of data from the system,

rather than program out of context. Though a transition

from the VBOT itself to a paper posttest may seem inau-

thentic, the simplicity of vbot and the verisimilitude of the

paper VBOT circuit board mitigated most difficulties.

More than 90 % of the answers were either right or wrong

without ambiguity, and the remaining answers were tested

by inputting them as program code into VBOT, so that the

VBOT software could evaluate their functionality. No

human raters were used.

Activity Log Measures

The activity log measures were designed to reveal infor-

mation about the types of circuits that students were

building. There are three core quality metrics (density,

difficulty, and uniqueness, described below), which were

derived from salient quality metrics by Boehm et al.

(1976).

Density is the number of working operations in a vbot

circuit; it is a simple size metric. In the case of the basic

light-finding circuit described by Braitenberg (1984) (in

VBOT, it is ‘‘RM = LL; LM = LR’’), the operation
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density is 4, as there are four wired operations on a working

circuit. Density provides insight into the manner in which a

student creates a circuit. High-density (‘‘dense’’) circuits

have accreted operations over time out of previously

working circuits. Low-density (‘‘sparse’’) circuits are short

but often easier to understand, due to their brevity. It takes

a relatively long time to build a dense circuit in VBOT; the

interface privileges smaller circuits. Therefore, a student

with high average density is building circuits in a higher

relative ‘‘time per circuit.’’ Density is not, in itself, a

measure of understanding, but we can use density to

compare how much a student’s programs grow over time,

see how often and when students restarted their programs,

and see how large a students’ program might grow. Density

is not a performance measure, as size does not entail any

valence. Indeed, a sparse circuit can often be the most

appropriate. However, dense circuits can (but do not nec-

essarily) deal with a variety of scenarios (e.g., many robots

surrounding it; many balls surrounding it) with different

actions resulting from each scenario. In complex systems

thinking, successful models are often those that show ro-

bustness in a variety of conditions (Holland 1995), re-

gardless of size. Computational thinking, on the other hand,

often privileges simplicity (Basawapatna et al. 2011),

possibly suggesting a low density. Thus, this measure

should provide some information toward situating circuit

building in those two domains.

Difficulty measures the number and amount of the

‘‘high-level’’ operations that a student uses per circuit.

Logic operations (e.g., IF/THEN) are weighted double that

of arithmetic operations (e.g., ADD), which are weighted

double that of sensors and motors. Therefore, logic op-

erations are measured to be four times more ‘‘difficult’’

than sensors or motors. This is based (roughly) on the

relative frequency of the operations as logic operations

occur 75.4 % less frequently than sensors and motors.

Difficulty is a metric designed to measure the ‘‘adventur-

ousness’’ and syntax vocabulary of a student.

Academic adventurousness and self-efficacy are often

correlated with measures of understanding (Schunk 1983),

and in the case of VBOT, adventurous students can see a

wider variety of scenarios and behaviors in context. Stu-

dents creating high difficulty programs are likely to have

tested all of the operations and used high-level operations

frequently. Students whose circuits show a high average

difficulty but a low average density are most likely building

simple circuits out of complicated elements. A student

whose circuits show a high average difficulty and a high

average density would likely be using several complicated

operations simultaneously. A student whose circuits show a

low average difficulty and a high average density is prob-

ably building a complicated circuit out of simple

components.

In itself, difficulty is also not a measure of understand-

ing or performance, but, instead, it measures the degree to

which a student could successfully deploy complex op-

erations. However, these complex operations are at the core

of more advanced programming, suggesting that students

writing more difficult circuits are primed to better under-

stand computation in the future. On the other hand, work in

complex systems thinking, such as Wolfram (2002), often

privileges easily comprehensible rules (i.e., less difficult)

from which more complex behavior will emerge.

Uniqueness is the number of unique operations per cir-

cuit. For instance, a circuit with the left light sensor (LL)

attached to the right motor (RM) through an ADD would

have a uniqueness of 3. A circuit that routed signal through

two ADD operations would still have a uniqueness of 3

(ADD = 1, LL = 1, RM = 1; 1 ? 1 ? 1 = 3). The

uniqueness metric provides insight into the semantics of

difficulty and density. A student with a high uniqueness

and a high difficulty is creating an extremely complicated

circuit, no matter the density. A student with a low

uniqueness and a high density is creating a complicated

circuit out of simple repeated elements. Uniqueness is a

partial measure of efficiency, as VBOT is designed such

that sets of more complex operations can often be collapsed

into a single, higher-level operation, much like other

functional programming languages (e.g., Scheme). Highly

unique circuits are more efficiently written, and efficiency

of programming is a core concept across most definitions

of computational thinking. On the other hand, it is easier to

predict the emergent behavior of a system with many

simple elements rather than a few complex ones (Holland

1995), so complex systems thinking might privilege low

uniqueness.

Furthermore, we performed simple counts of the number

of modifications (circuits) per class, and we also calculated

a mean per circuit of each individual element in a circuit.

We describe the relationship of these activity log measures

to computational and complex systems thinking in the

discussion below. No metric of ‘‘program correctness’’ is

possible, due to the shifting goals of the class and of in-

dividual students in playing the game. This is purposefully

designed into VBOT, as part of the learning task is that

students can fluidly take on different roles in a complex

system. For instance, if a student played as a goalie, any

measure of goals scored would be misleading, at best.

Freed from explicit measures of performance, students

could shift roles as frequently as needed.

Results

In this section, we will present: contrasting case studies of

a group from a virtual VBOT class and a group from a
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physical VBOT class; analytics and statistics about the

significant and salient differences between virtual and

physical classes and overall performance metrics. We will

present these data in terms of their impact on computa-

tional and complex systems thinking. In the discussion

below, we will describe the relevance, implications, and

impact of the results presented here.

This section is designed to highlight salient differences

in the computational and complex systems thinking in

students using the virtual VBOT and physical VBOT en-

vironments. Case studies, activity logs, and performance

measures show very different patterns of activity and per-

formance in the two groups. Comparing the two classes

highlights the common benefits in constructionist robotics.

The case studies provide insight into why the two systems

support the learning goals differently; the logs provide a

backbone of those case studies and provide a portrait of

day-to-day patterns; and the pre-/posttest differences (de-

scribed below) highlight the aspects supported and provide

some evidence of progress toward learning goals.

These differences should be framed in terms of the dif-

ferences in the classes and environments themselves. The

classes using physical vbots dealt with both the benefits and

vagaries of the physical world: physical robots are generally

slower and more unpredictable than virtual robots. Of

course, the physical world is also more intuitive and

meaningful for novices, as we exist in it and have intuitions

about physical movement (Papert 1980). These differences

may sound obvious, but they frame our results. The differ-

ences between how the classes interacted with VBOT were,

in most cases, a function of speed, meaning, and intuition.

Less than a minute of video would be sufficient for an

informed observer to distinguish differences between the

patterns of activity in a virtual and a physical classroom,

even if no physical or virtual vbots were visible. The vir-

tual classes are characterized by constant action on the

computers punctuated by short discussion. In addition,

there is a constant rumble of discussion between students at

nearby computers. The class feels traditionally teacher

oriented until the start of those activities in which every-

body looks at the common screen in the front of the

classroom. At that moment, the class explodes in yelling,

movement, and students begin to tinker with their virtual

vbots. The first comments heard, usually, are ‘‘there I am!’’

as students locate their individual vbot on the projected,

shared screen. At particular decisive points in the action

(near the end, often), students often analyze the actions of

their fellow students: ‘‘Alice, move your bot! We need to

cluster!’’ In contrast, the physical classes move around the

room much more. This is made most obvious in Mr.

Cleveland’s classroom in which he worked hard to main-

tain a teacher-centered environment. Despite his attempts

to quell noise, however, students walked to other tables to

discuss the design of their physical vbot behaviors during

the vbot activities. These actions result in an environment

that feels more like that of an undergraduate engineering

laboratory than middle school classroom.

These differences between virtual and physical classes

show up on the activity-by-minute graphs (see Fig. 2). The

activity in the physical classrooms occurs in many short

bursts, whereas the activity in the virtual classrooms is

significantly more consistent, though it peaks around three

quarters of the way into class as the culminating activity is

reaching its end. The activity then trails off as students

finalize their circuits for the day. In addition to differences

in when students used the VBOT programming environ-

ment, they differed in what they did: Due to their constant

work with the computers, the virtual classes produce far

more circuits than the physical classes.

Circuit Progressions

The contrasting case studies below (Maribel’s group and

Claudia’s group) exemplify the differences between the

virtual and physical vbot classes as a whole. This section

investigates a representative working circuit from the two

groups that accumulated the most points in their respective

classes during the last activity, one group is from a virtual

class and one is from a physical class. By comparing them,

we can highlight differences between the virtual and phy-

sical classes and provide context for differences. We can

use these differences to highlight the ways that students

learned computational and complex systems thinking.

These students exemplify both the qualitative and quan-

titative differences between the classes, though the groups

themselves were not strictly ‘‘representative’’—we selected

these student groups not for generalizability across SES,
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virtual (top) and physical (bottom) classes on Day 5
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race, or ability, but because their experiences shed light on

how and why computational and complex systems per-

spectives interrelate. That said, if a measure (on a particular

day) from the physical class is higher than the measure from

the virtual class, that relationship will also hold true for the

relationship of the two groups in this section. This section

serves primarily as a description of how specific students

gained skill in programming VBOT in their groups.

Claudia’s Group, Physical Class, Old Grove

Day 1: The first day of the physical class is spent inventing and

investigating this circuit and testing it on the physical robots.

Both the virtual and the physical classes start with the same,

very basic circuit adapted from Braitenberg’s LOVE circuit.

Day 2: This student’s day 2 circuits consisted of various

permutations of constants and light sensors. She also created a

circuit identical to the circuit she had created on day 1, sub-

stituting bump sensors for light sensors. Her circuit was de-

signed to move the robot forward at full speed with both

motors working 100 %. However, due to the imprecise nature

of the motors, each robot makes an arc rather than a perfectly

straight line; the angle is contingent on the power of the

motors attached to it. The student adapted her circuit to work

with the imperfection, which took about 10 min. Those

adaptations have no direct correlate in most virtual robotics,

as virtual motors tend to be more predictable. That time was

spent on the adaptations, rather than social competition or

collaboration, focuses more of the student’s attention on her

individual robot; that was her own decision. This shows the

beginning of what we call an agent perspective—a focus on

the agent as it will perform in the system.

Day 3: Students played the Tag Activity on day 3. The goal

of the game is for a student to program her vbot to swarm the

light and knock away other robots. Claudia’s best circuit did

this exceptionally well. This circuit logic is as such: move

toward the light until bumped; if bumped, move backward

away from the light. This is a complicated circuit; her later

circuits are not as complex. In part, this code builds on the code

that she wrote on day 2 in which she was spending time working

on her program rather than working extensively with other

students. That this program was quite complex and successful

suggests that she has considered how her own robot would act

in context—an agent perspective on the system itself.

Day 4: Her circuits on day 4 were significantly simpler

than the successful circuit that she created on day 3. It

moves the robot directly forward at half speed until it

touches another robot. At that point, the robot lurches

forward at full speed; this is an effective goalie strategy.

Again, she saw success by creating a self-consistent be-

havior for her robot to enact in a systems context. Her

circuit helped determine the winner of a contest on day 4.

Day 5: Her primary day 5 circuit is an evolution of the

goalie circuit on day 4. It moves toward the goal until it is

touched, at which point it lurches forward at full speed.

This is an efficient strategy for a midfielder. This circuit

effectively won the game for its team of three robots by

both pushing the ball toward the opposing team’s goal-

light, knocking both the ball and the other robots away.

All of Claudia’s group’s later circuits would only have

been effective in a physical robotics setting. They all rely

on the physical mass of the vbot, in that the circuits were

designed to ram away other robots by using mass and speed

and the physical mass of individual robots was not

simulated in the virtual setting. This strategy was effective,

and it gave Claudia’s group significant confidence. Their

robot was repeatedly described as ‘‘tough,’’ and, indeed,

they treated it as if it had a ‘‘tough’’ personality.

Other than the differences in perspective, a key feature

to contrast between Claudia’s circuit and Maribel’s circuit

below is that Claudia’s circuits are much more complex (as

measured by the metrics described above).

Maribel’s Group, Virtual Class, Old Grove

Day 1: Maribel’s day 1 circuits make little sense. She

makes a long series of similarly incorrect circuits, sug-

gesting that the group did not yet understand how to pro-

gram. Several groups showed similar confusion, as it can

take 20–30 min to learn basic programming in VBOT and

not every group is equally engaged in the process. It is

notable, however, that Maribel’s circuits were unique in

her class; she was testing her conceptions of programming

and neither sharing with nor copying others’ work. Her

group was tinkering and working with their circuits, though

they were not communicating effectively with other

groups, nor did they program them correctly.

Day 2: The group tried a single circuit several times,

tinkering with variations. This circuit causes a vbot to

search out a light or goal at variable speed. Although the

group produced several circuits that day, day 2 marked few

significant deviations from basic working circuits. How-

ever, they did manage to make working programs with

technically correct, if simplistic, program code.

Day 3: On day 3, the group tinkered with circuits

relatively similar to a teacher-provided (‘‘starter’’) circuit.

Maribel’s modifications were technically correct, but,

again, they show few significant deviations from basic

working circuits. At this point, Maribel is making circuits

that work well in context—they tag other robots efficient-

ly—but the code itself is quite simple. This is indicative of

an aggregate perspective—a focus on the system as it

works, rather than the robot itself. If her vbots were un-

successful, simple circuits would seem like laziness, but
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their success suggests that she is considering the role of her

simple robot in the context of other robots.

Day 4: Indeed, after tinkering, the group settled on a simple

starter circuit. Again, this circuit did well in the context of the

game activity that the students were playing. Since the goal of

the activity was to tag students, Maribel’s vbot stayed near the

light and tagged all the students that passed by it.

Day 5: Day 5 provided further evidence of Maribel

aggregate perspective. They saved two different simple,

but relevant, circuits and switched quickly between them

depending on the action of their classmates’ vbots. The

circuits, respectively, accelerated toward the light and to-

ward other vbots. Few other students used this combination

of circuits on the final day, and although the circuits were

uncomplicated, they were effective. Her effectiveness at

using the circuits in context suggested an understanding of

the relative value and logic of the two circuits in the

context of the game as played.

Perhaps the key feature of Maribel’s group’s work is that

they learned to create simple circuits that work well in context.

Her final circuits required some understanding of the func-

tioning of the system as a whole to incorporate to function

successfully. Maribel’s actions require an integrated under-

standing of the ways that taking on a new role would affect the

function of the team. For instance, if a player on, say, the

Chicago Fire soccer team could freely switch between goalie

and fullback, when would he choose to do that? To make that

switch successfully, he would have to understand the roles and

behaviors of the other players, including which other players

might decide to also switch roles and when they would do so.

Contrasting Virtual and Physical Student Performance

and Activity

While it is difficult to tease out all of the perceptual differ-

ences between virtual and physical interactions, it is possible

to measure differences in effect and action. In this section,

we will describe their contrasting patterns of behavior and

describe ways in which the virtual and the physical classes’

performance and activity differed. The physical class was

most constructive in two distinct periods of programming

activity in the first 30 min; this was followed by 30 min of

testing their creations against each other in various scenarios

(see Fig. 2). In the virtual class, programming activity was

interspersed more evenly. This discrepancy was due, in part,

to students’ belief that physical robots must be tested against

other physical robots. Note that this behavior was not re-

quired by the teacher or the setting, but rather, determined by

the students; indeed, the teacher in these two classes was the

same teacher. The virtual class was constantly and consis-

tently changing their circuits. By working on their circuits

individually and testing them against each other on the floor,

the physical students had more opportunity to hone the

individual behaviors of their robots in between testing ses-

sion. In contrast, the virtual students wrote more program

code more often.

The difference in patterns of behavior emerged, in part,

from the different ways that students built circuits. We

evaluated a student group’s circuits on the basis of

uniqueness, difficulty, and density. There existed very large

significant differences overall between the means (by stu-

dent) of virtual and the physical classes in uniqueness

(n = 33, p\ 0.001, F = 181.04, partial eta sq. = 0.92),

difficulty (n = 33, p\ 0.001, F = 198.87, partial eta

sq. = 0.93), and density (n = 33, p\ 0.001, F = 127.78,

partial eta sq. = 0.89). Figure 3 shows the relative means.

As shown in Fig. 3, students in the physical classes

typically created more unique, difficult, and dense circuits

than students in the virtual classes. These three metrics are

not necessarily correlated with positive performance,

however. As seen in Fig. 4, uniqueness and density de-

creased each day over the course of the activities in both

virtual and physical classes, while difficulty stayed roughly

the same across all days. Figure 4 shows the graphs of

these three metrics plotted against time. In this section, we

will investigate several explanations for this.

As seen in Fig. 4, as students understood the system

better over the course of the days, their circuits became

more targeted and, often, simpler. This mirrors our analysis

in the case studies above that learning to program did not

necessarily result in higher metrics. Indeed, as the activities

became more fast-paced and intricate, the circuits became

simpler. That is not to say that all simple circuits were good

circuits, but in Maribel’s group above, we can see that

optimal placement of a simple circuit achieved more suc-

cess than others’ more complex circuits elsewhere.

Fig. 3 Means of circuit metrics in virtual/physical classes
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Tables 2 and 3 both present models of pretest/posttest

performance. Table 2 shows the mean differences between

the pretest and posttest by type (virtual or physical) for all

sub-questions of Q1 and Q2 and presents an ANCOVA of

each of the components of Q1 and Q2 (e.g., Q1A Posttest by

Physical [virtual, physical] within School [oldgrove, bay-

ville] controlling for Q1A Pretest). Table 3 shows the av-

erage overall scores for Q4 by Physical [physical, virtual]

and presented an ANOVA of the differences by Physical

[virtual, physical] within School [oldgrove, bayville] for the

components of Q4, which was the VBOT programming

question (and did not have a corresponding pretest).

The physical classes were more likely to write difficult

circuits using more constants and branching logic (IFs); this

is consistent with the findings of time spent by physical

students on individual programs. These relatively difficult

operations did help them in the posttest performance metric

question 4B, in which they did significantly better than their

virtual class counterparts (posttest question 4B, n = 33,

p\ 0.001). However, the simplicity of the virtual class’s

circuits ostensibly helped them perform better on the slightly

more difficult question 4D that addresses complex move-

ment around the shared space (posttest question 4D, n = 33,

p\ 0.05). As described above, questions 4C and 4D were

Table 2 ANCOVA for

differences in pre-/posttest gain

by physical/virtual classes

within school

Each question is on a scale of 0

(lowest grade) to 3 (highest

grade)

* p\ 0.05; ** p\ 0.01;

*** p\ 0.001

Physical Virtual F Sig Part. Eta2

Pretest Posttest Pretest Posttest

M SE M SE M SE M SE

Q 1A 2.60 0.24 2.64 0.24 2.70 0.20 3.02 0.20 1.85 0.15 0.07

Q 1B 1.76 0.14 1.67 0.18 1.76 0.14 2.23 0.15 2.82 0.04* 0.05

Q 1C 2.30 0.16 1.84 0.14 2.07 0.13 2.10 0.11 3.45 0.02* 0.12

Q 2B 1.88 0.19 2.21 0.18 1.93 0.15 2.73 0.15 1.61 0.19 0.06

Q 2C 1.58 0.18 2.00 0.19 2.08 0.15 2.62 0.16 0.16 0.92 0.01
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Fig. 4 Day-by-day graphs of

the circuit metrics in each class
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designed to test students understanding of multi-robot sys-

tems and the aggregate behavior of multiple robots.

Virtual class students spent the entire time at their desks

building circuits—the physical classes spent only part of

their class time doing so. The number of circuits the virtual

classes built was only about 20 % more, on average; we

expected greater magnitude in the difference. Figure 5

(above) shows how the classes differed across conditions

between the two schools.

The data suggest that the virtual class learned concepts

that the physical class did not and vice versa. The physical

class used their understandings of the robot as a physical

object as a basis for their primary mode of programming.

Claudia’s group designed most of its circuits for the

specific goal of navigating and bumping other robots. The

students’ understandings of the capabilities of a robot were

mediated by the physical presence of the robot. As such,

physical class students used more CONSTANT operations

and more IF/THEN operations, both of which are more

easily adaptable to sensor noise. Virtual students, on the

other hand, worked more contextually. Students in the

virtual classes built more, simpler circuits that worked best

for specific contexts. As shown, Maribel’s group took into

consideration the roles that her fellow students played and

used those circuits that would be most appropriate. These

data suggest that she could understand and exploit the

emergent nature of the system. As such, we can see the

ways in which even subtleties in the differences between

physical environments and virtual ones can have effects.

Discussion

As we have seen, both the physical and the virtual classes

made gains in understanding complex systems. However,

looking more closely, the gains for the two groups had a

different ‘‘character.’’ Log data, interaction patterns, and

pretest/posttest differences suggest that the physical class

students tended to understand the systems from a more

agent-based perspective. The virtual students, on the other

hand, tended to understand the systems from a more ag-

gregate perspective. Evidence for this finding can be seen

across the results presented.

Physical class students created more complex individual

robots; they focused on improving the agent’s behavior rather

than maximizing the function of the system (i.e., team goals

scored). Figure 3 shows that the physical class students created

more complex and more difficult circuits. They spent more

time working per circuit. Claudia’s group designed circuit

behaviors in which the robot would move and act indepen-

dently. The virtual class students, on the other hand, created

circuits that worked in context. They created more circuits

overall, and those circuits were simpler. Maribel’s group cre-

ated contextually relevant circuits, and they created these cir-

cuits quickly to respond to the actions of system as whole.

This finding is corroborated by the posttest results, which

show that the physical students performed significantly

better on question 4B (about directing agent behavior), while

the virtual students performed significantly better on ques-

tion 4D (about the behavior of a vbot in the context of other

vbots). As stated earlier, both classes performed relatively

similarly overall on question 4 (programming vbots). These

differences suggest that while both sets of classes were

learning how to program, they did so differently.

Why Did the Virtual and Physical Classes Differ?

Our data suggest that virtuality enabled students to think

about their agents from a more aggregate perspective. In

particular, speed allowed students to see the effects of an

Table 3 ANOVA for differences between physical/virtual classes

within school

Physical Virtual F Sig. Part. Eta2

M SD M SD

Q 4A 2.24 1.23 2.42 0.96 0.22 0.88 0.01

Q 4B 0.94 0.98 2.49 0.96 18.10 0.00*** 0.46

Q 4C 2.06 1.28 1.79 1.06 1.64 0.19 0.05

Q 4D 1.21 1.34 1.63 1.07 2.99 0.04* 0.11

Each question is on a scale of 0 (lowest grade) to 3 (highest grade)

* p\ 0.05; ** p\ 0.01; *** p\ 0.001
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agent on the system as a whole, the ability to see multiple

representations simultaneously enabled them to frame the

actions of their agent in its system, and the ease of

modification enabled students to do low-level tinkering.

Likewise, fundamental features of physicality enabled

physical class students to think about the system from a

more agent-based perspective. Students could take the time

to communicate with their groups in person and in depth,

and that depth and lack of constantly updating new data

allowed them to improve specific programs that they were

writing and to think significantly more about how an in-

dividual agent might affect a system. Therefore, while both

virtual class students and physical class students exhibited

significant improvements in levels thinking, the virtual

classes did so from an aggregate perspective, while the

physical classes did so from an agent-based perspective,

i.e., students in the physical environment better understood

how individual agents contributed to emergent systems

behavior, whereas students in the virtual environment

showed greater understanding of how systems effects im-

pacted individual agents. To use another example, it is as if

students in the physical environment better understood how

individual agents (robots) could make a goal, whereas

students in the virtual environment better understood how

the complex interaction of multiple robots impacted indi-

vidual robots and goals scored. In regard to previous

‘‘levels’’ literature (Wilensky and Resnick 1999), it is as if

students in the physical environment could better under-

stand how individual cars could cause a traffic jam,

whereas students in the virtual environment could better

understand how the traffic jam could move backward. It is

not new to frame physicality/virtuality in terms of speed

and data input—much modern HCI work is framed on this

difference (Ishii 2008). This is, however, the first study to

frame and investigate these differences in terms of com-

putational thinking and systems thinking.

That students were able to learn systems content by

engaging in computational practices suggests that complex

systems and computational thinking can be mutually rein-

forcing. Harel and Papert’s (1990) ‘‘Integrated Learning

Principle’’ suggests that ‘‘learning more can be easier than

learning less’’—when complex content is framed compre-

hensibly and in context, it is often easier to learn than when

presented simplistically out of context. Work such as

Wolfram’s (2002) and Goldstone and Wilensky’s (2008)

suggest that complex systems theory is more easily avail-

able as a mode for understanding science precisely because

of the relative power and comprehensibility of scientific

computation, even in a context in which many believe

programming is inherently difficult. However, there are

few studies that examine the relationship between com-

putational thinking and complex systems thinking at the

middle school level, and in this study, students made real

progress in learning to program while engaging with

complex systems. This interplay appears valuable. Indeed,

this suggests that it may be valuable to design curricula in

which students engage both with virtual simulations (such

as NetLogo) and physical manipulatives (such as LEGO

Mindstorms) around the same content.

This work is a study of one system (VBOT) used to

teach two intertwined learning goals (complex systems and

computational thinking) to a specific population (middle

school students). This study was situated in four middle

school classrooms from two different Chicago public

schools over the course of 1 week. From this perspective,

this is an enormous task—these students have no pro-

gramming experience and many of them are doing quite

poorly in traditional academic settings. To teach these

students about computer programming and complex sys-

tems content simultaneously might seem too much content,

taught too quickly. However, students learned not only how

to program in a proprietary system, but they did so in a

complex systems environment, in a way that shows re-

markable understanding and improvement. Our results led

us to conclude that complex systems and computational

thinking provide each other a meaningful context. More-

over, findings that students’ physical and virtual perspec-

tives framed how they learned content indicate potential

benefits to considering how those perspectives might re-

inforce one another when designing learning environments.

Overall, we found that students in all classes learned as a

result of being able to play relatively freely with the sys-

tem. The amount of time given by the individual teachers,

the design of the class material, and the school environ-

ments mattered far less than simply motivating students to

share and tinker with the system. What we found was that

students learned a great deal across the board: A significant

majority of students learned how to program in VBOT,

they could collaborate and compete in the classroom using

VBOT, and they could take that knowledge and apply it.

Learning, playing, and sharing are complex activities. By

tinkering, playing, and sharing, students came to better un-

derstand a complex and complicated set of content in a short

period of time. Our findings suggest that complex systems

and computational thinking can be mutually reinforcing

because of the agent and aggregate perspectives that the

students adopt. Many of these students entered the project

with a view of robots as Martian invaders and left the project

believing that they knew how to program robots. Other

students came in assuming that every flock of birds had a

predetermined leader and that every anthill was ‘‘radio-

controlled’’ by a hidden queen. These same students came to

understand that sometimes the only way to a common goal

was an array of nearly identical simple agents.

In this project, the tools provided affordances for stu-

dents to learn in equivalent virtual and physical
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constructionist learning environments and they interacted

with those environments meaningfully but differently. It is

our belief that by adapting the environment design to fa-

cilitate cognitive learning goals and that by having a better

understanding of students’ perspectives when designing

those environments, we will be able to better teach students

to work and reason with complex content.

Appendix: Pretest and Posttest

Pre-Questionnaire   

Name:  

Date: 

Just write what you think! Answer each question with a 
sentence or two. 

Thank you! 

Q1 
When birds fly south for the winter, they often form a V-shape. You might have seen this in the 
sky. This is a picture of flock of birds flying in V-shape: 

How does Shelby, the bird, know where to fly in the V-shape? 

How do the birds know where to go when they are flying in a V-shape? 

Why do birds fly in V-shapes? 

Shelby

Q2 
Imagine that this “flowchart” describes your day at school. You can follow the flowchart by 
answering questions about your day. Depending on your answers to the questions, it tells you 
what to do next. Start at “START” (in the image above) and follow the arrows. 

Have you ever seen a flowchart before?  YES   NO 

Using the chart, list the things that happen during a day of school.  

Change the flowchart so that if you are not at school, you read a book. (Draw on the picture 
above.) 

Post-Questionnaire  

Name:  

Date: 

Just write what you think! Answer each question with a 
sentence or two. 

Thank you! 
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Q1 

When birds fly south for the winter, they often form a V-shape. You might have seen this in the 
sky. This is a picture of flock of birds flying in V-shape: 

How does Shelby, the bird, know where to fly in the V-shape? 

How do the birds know where to go when they are flying in a V-shape? 

Why do birds fly in V-shapes? 

Shelby

Q2 

Imagine that this “flowchart” describes a day at home. You can follow the flowchart by 
answering questions about that day. Depending on your answers to the questions, it tells you 
what to do next. Start at “START” (in the image above) and follow the arrows. 

Using the chart, list the things that happen during this day at home.  

Change the flowchart so that if you are not at home, you go home. (Draw on the picture above.)

Q4 
Your vbot is the airplane in the picture. The arrows in the middle are other people’s vbots, and 
they are stopped in the middle of the screen. There is a light source in the middle of the screen. 

4.A. Wire up a vbot to go in a loop around the screen. 
(Use attached vbot breadboard. Circle Q 4.A. at the top of the sheet.) 

4.B. Wire up a vbot that would make a smaller loop. 
(Use attached vbot breadboard. Circle Q 4.B. at the top of the sheet.) 

4.C. Wire up a vbot that makes either loop using NO LIGHT SENSORS (LL and LR)?  
(Use attached vbot breadboard. Circle Q 4.C. at the top of the sheet.) 

4.D. Wire up a vbot that makes either loop using NO VBOT SENSORS (LB and RB)? 
(Use attached vbot breadboard. Circle Q 4.D. at the top of the sheet.)

Circle one:  
Question 4.A.   
Question 4.B.   
Question 4.C.   
Question 4.D. 
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